- (5) Reports of the preparation of MoCr(O₂CR)₄ derivatives have been made, but none has been substantiated as pure compounds, free of Mo₂(O₂CR)₄ which always appears to accompany formation of the heteronuclear species; cf. ref 1 and C. D. Garner and R. G. Senlor, *J. Chem. Soc.*, *Chem. Commun.*, 580 (1974).
- species, of ref r and c. 2. Cannot be a seried of the species (Chem. Commun. 580 (1974). (6) This stability is in contrast to that observed for the species $[Mo_2(O_2CR)_4]^+$ obtained by electrochemical oxidation of $Mo_2(O_2CR)_4$ in acetonitrile; cf. F. A. Cotton and E. Pedersen, *inorg. Chem.*, **14**, 399 (1975).
- (7) Details of the X-ray structure elucidation, including tables of final atomic and thermal parameters and structure factors will be provided in a full publication.
- (8) On leave from the University of Zagreb, Zagreb, Croatia, Yugoslavia.

V. Katović,⁸ J. L. Templeton R. J. Hoxmeier, R. E. McCarley*

Ames Laboratory-ERDA and Department of Chemistry Iowa State University Ames, Iowa 50010 Received May 31, 1975

Stereochemistry of *N*,*N*-Bis(trimethylsilyl)aminoand *N*-tert-Butyl-*N*-(trimethylsilyl)aminobis-(trifluoromethyl)phosphine

Sir:

The structures¹ and stereochemistry² of aminophosphines have received considerable attention in recent years. Our interest in this area is being extended to include compounds containing the silicon-nitrogen-phophorus linkage.³ The new silylaminophosphines, $(Me_3Si)_2NP(CF_3)_2$ (1) and $(Me_3Si)(t-Bu)NP(CF_3)_2$ (2), were prepared by the reaction of $(CF_3)_2PCl$ with the *N*-lithium derivative of the appropriate silylamine.⁴

At ambient temperature the ¹H NMR spectrum of 1 consists of a single broad resonance which on cooling broadens further before splitting into two sharp lines and a multiplet (Figure 1a). By recording the ¹H spectra at both 60 and 100 MHz it was determined that: (i) the 2.8 Hz spacing between the two sharp lines is a coupling constant, as is the 0.7 Hz splitting within the multiplet, and (ii) the separation (6.3 Hz at 100 MHz, 3.7 Hz at 60 MHz) between the doublet and the multiplet results from a chemical shift difference. The ¹⁹F NMR spectrum of 1 is a doublet (+59.2 ppm from CFCl₃, $J_{PCF} = 93.1$ Hz) which remains unchanged down to -130° .

These observations are consistent with hindered rotation about the N-P bond and the characteristic^{1,2} ground state structure, in which the CF₃ groups are isochronous and the Me₃Si groups are anisochronous. The doublet Me₃Si reso-

nance in the ¹H NMR spectrum of 1 can be assigned to the Me₃Si(a) group with $J_{PNSiCH} = 2.8$ Hz. Such an assignment is based on the observations^{5,6} that the analogous P-N-C-H and P-N-¹³C coupling constants in dimethylaminophosphines are larger when the methyl resides cis to the phosphorus lone pair than for the trans conformation. For the Me₃Si(b) group $J_{PNSiCH} \sim 0$ and $J_{FCPNSiCH} = 0.7$ Hz. Possibly the proximity of the Me₃Si(b) and CF₃ groups promotes a through space interaction. A similar preferential phosphorus coupling has been found to exist in the low temperature ¹H NMR spectra of (Me₃Si)₂NPCl₂ and a long

Figure 1. NMR spectra of $(Me_3Si)_2NP(CF_3)_2$ (1) and $(Me_3Si)(i-Bu)NP(CF_3)_2$ (2): (a) 60-MHz ¹H spectrum of 1 at -40°; (b) 60-MHz ¹H spectrum of the Me_3Si group of 2 at ambient temperature; (c) 60-MHz ¹H spectrum of the *i*-Bu group of 2 at ambient temperature; (d) 56.45-MHz ¹⁹F spectrum of 2 at ambient temperature.

range proton-fluorine coupling has been observed in the aminoarsine $(Me_3Si)_2NA_5(CF_3)_2$.³

Typically $\Delta G_{\rm NP}^{\ddagger}$ values for other acyclic aminophosphines fall in the range 7-10 kcal/mol.² The high $\Delta G_{\rm NP}^{\ddagger}$ value of 15.3 kcal/mol which is calculated⁷ for **1** is most reasonably attributed to the steric bulk of the Me₃Si moiety.

Compound 2 is apparently unique among aminophosphines since both the ¹H and ¹⁹F NMR spectra (Figure 1) indicate the presence of two rotational isomers at ambient temperature. The Me₃Si region of the ¹H spectrum is strik-

ingly similar to that observed at low temperature for 1 except that the doublet:multiplet ratio is ca. 1.3:1 rather than 1:1. Two *tert*-butyl resonances, a doublet and a broad singlet, of unequal intensities are also observed. The ¹⁹F NMR spectrum consists of two doublets (+54.9 ppm, $J_{PCF} = 100.0$ Hz, and 55.4 ppm, $J_{PCF} = 101.0$ Hz) in the intensity ratio 1.3:1. These results are consistent with the existence of two rotamers of slightly different energy which undergo slow interconversion on the NMR time scale at ambient temperature.

In view of the earlier discussion of the angular dependence of coupling constants the more intense Me₃Si doublet $(J_{PNSiCH} = 3.2 \text{ Hz})$ and the *tert*-butyl singlet are attributed to rotamer A in which the Me₃Si group is cis to the phosphorus lone pair. Similarly the doublet in the *tert*-butyl region $(J_{PNCCH} = 1.2 \text{ Hz})$ and the Me₃Si multiplet $(J_{FCPNSiCH} = 0.7 \text{ Hz})$ are ascribed to rotamer B. Furthermore, it is noted that the less intense doublet in the ¹⁹F spectrum (presumably resulting from rotamer B) has the larger peak width which correlates with the larger H-F coupling observed for the less intense Me₃Si resonance in the ¹H spectrum.

The high temperature ¹H NMR spectrum of 2 revealed a coalescence of the *tert*-butyl signals at +110° from which a value of $\Delta G_{NP}^{\dagger} = 20.8 \text{ kcal/mol}$ is calculated.⁷ This very high value of ΔG_{NP}^{\dagger} is not easily explained. The shorter

C-N bond in the tert-butyl compound 2 relative to the Si-N bond in the disilyl analog 1 might, however, cause greater steric interaction with the CF₃ groups in the rotational transition state resulting in a higher barrier to N-P rotation.

The results of this study have a bearing on a report by Scherer and Schieder⁸ in which the preparation of the phosphine imine, 3, was described. Assignment of the imine

> SiMe₃ $(t-Bu)_2 PN(H)SiMe_3 \xrightarrow{1. n-BuLi} (t-Bu)_2 P = NSiMe_3$

structure to 3 was based largely on the observation of two different Me₃Si signals, a doublet $(J_{PSiCH} = 2.2 \text{ Hz})$ and a singlet $(J_{PNSiCH} = 0.0)$, of equal area in the ¹H spectrum. In light of the high N-P rotational barriers and preferential phosphorus couplings reported here for the aminophosphines 1 and 2, the spectrum of 3 would also be consistent with the isomeric aminophosphine structure $(t-Bu)_2PN$ -(SiMe₃)₂ in which nonequivalent Me₃Si groups result from hindered rotation about the N-P bond.

Acknowledgment. The authors are grateful to the National Science Foundation (Grant GP 38027X) and the Robert A. Welch Foundation for generous financial support.

References and Notes

- (1) (a) E. D. Morris and C. E. Nordman, Inorg. Chem., 8, 1673 (1969); (b) L V. Vilkov, L. S. Khalkin, and V. V. Evdokimov, *Zh. Strukt. Khim.*, **10**, 1101 (1969); (c) G. C. Holywell, D. W. H. Rankin, B. Beagley, and J. M. Free-man, *J. Chem. Soc.* A, 785 (1971); (d) A. H. Brittain, J. E. Smith, P. L. Lee, K. Cohn, and R. H. Schwendeman, J. Am. Chem. Soc., 93, 6772 (1971); (e) P. Forti, D. Damiani, and P. G. Favero, ibid., 95, 756 (1973).
- (2) (a) M. P. Simonnin, J. J. Basselier, and C. Charrier, Bull. Soc. Chim. Fr. 3544 (1967); (b) A. H. Cowley, M. J. S. Dewar, and W. R. Jackson, *J. Am. Chem. Soc.*, **90**, 4185 (1968); (c) D. Imbery and H. Freibolin, *Z. Naturforsch.*, *Teil B*, **236**, 759 (1968); (d) A. H. Cowley, M. J. S. Dewar, W. B. Jackson, and W. B. Jennings, J. Am. Chem. Soc. 92, 5206 (1970); (e)
 M. P. Simmonin, C. P. Charrier, and R. Burgada, Org. Magn. Reson., 4, 113 (1972); (f) I. G. Csizmadia, L. M. Tel, A. H. Cowley, M. W. Taylor, and S. Wolfe, J. Chem. Soc., Chem. Commun., 1147 (1972); (g) M.-C. Bach, Schweiger, ibid., 340 (1974); (k) S. DiStefano, H. Goldwhite, and E. Maz-
- (3) R. H. Neilson and A. H. Cowley, to be submitted for publication.
 (4) Full details of the syntheses of 1, 2, and related compounds will be published elsewhere.³ Compounds 1 and 2 were fully characterized by ir, lished elsewhere.³ Compounds 1 and 2 were fully characterized by ir, mass, and ¹H and ¹⁹F NMR spectroscopy.
- (5) A. H. Cowley, M. J. S. Dewar, W. R. Jackson, and W. B. Jennings, *J. Am. Chem. Soc.*, **92**, 1085 (1970).
- (6) M.-P. Simonnin, R.-M. Lequan, and F. W. Wehrli, J. Chem. Soc., Chem. Commun., 1204 (1972).
- (7) The ΔG^{\ddagger} values were calculated from the equation, $\Delta G_{c}^{\ddagger} = T_{c}[45.67 +$ 4.58 log $(T_c/\Delta\nu)$], which results from substituting the expression for determining the rate constant at coalescence, $k_c = \pi \Delta\nu/\sqrt{2}$ into the Eyring equation. For a review of the dynamic NMR method see J. O. Sutherand, Annu. Rep. NMR Spectrosc., 4, 71 (1971
- (8) O. J. Scherer and G. Schleder, Chem. Ber., 101, 4148 (1968).

Robert H. Neilson, R. Chung-Yi Lee, Alan H. Cowley*

Department of Chemistry, University of Texas at Austin Austin, Texas 78712 Received May 16, 1975

A ¹³C Nuclear Magnetic Resonance Study of the Biosynthesis of Islandicin from ¹³CH₃¹³CO₂Na

Sir:

Islandicin (1), a red pigment isolated¹ from the mold P. islandicum may be viewed as a biosynthetic prototype of the potent anticancer antibiotic adriamycin (2).² The former has been shown by Gatenbeck³ to be biosynthesized

from a polyketide precursor. His experiments demonstrated that incorporation of CH₃¹⁴CO₂Na gives the following labeling pattern

which we have confirmed through incorporation of CH₃¹³CO₂Na and subsequent ¹³C NMR. This pattern could arise from one of two possible foldings of a polyketide chain, a or b. We have demonstrated via the Tanabe tech-

nique,⁴ the use of ¹³C doubly labeled acetate (¹³CH₃- $^{13}CO_2Na$, 90% enriched), that islandicin is biosynthesized via configuration a.

P. islandicum Sopp was obtained from ATCC (no. 10127) and was maintained on Czapek-Dox-2% agar at 19-24°C. Petri dishes $(100 \times 15 \text{ mm})$ containing the growing organism were pulsed daily, each with 0.5 ml of $^{13}CH_3^{13}CO_2Na$ (8 mg/ml) from day 7 through day 16. Cultures were harvested¹ after 24 days, and the islandicin was purified by chromatography (benzene-silica gel) and sublimation. The isolated product (>90% pure) was chemically converted (Ac_2O/py) to the triacetate prior to ^{13}C NMR experiments. A small amount of ¹⁴CH₃CO₂Na was added along with the ¹³C acetate to accurately determine the incorporation level (2.0-2.5%).

Conversion of islandicin to the triacetate increased its solubility in CDCl₃ and made possible the use of $Cr(acac)_3^5$ for the ¹³C NMR experiments. Under these conditions all the ¹³C NMR signals were of approximately the same height (Figure 1A) which ensured that enrichment of carbon by labeled acetate would be readily apparent. This use of Cr(acac)₃ was especially helpful in determining incorporation levels and positions of singly-labeled precursors. The chemical shifts of islandicin triacetate are given in Table 1 and are based on known chemical shift data,⁶ comparison diacetoxyanthraquinones, 5-hydroxy-1,4-naphthaquinone and its corresponding acetate), and off-resonance decoupling experiments. C-1 was distinguished from C-4 and C-5 in off-resonance irradiation spectra where the former appeared as a sharp singlet and the two latter as broad signals; C-4 and C-5 were assigned by comparison of the spectrum